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ABSTRACT 
Event detection and recognition is still one of the most active 
fields in computer vision, since the complexity of the dynamic 
events and the need for computational efficient solutions pose 
several difficulties. This paper addresses detection and 
representation of spatiotemporal salient regions using the 3D 
Discrete Wavelet Transform (DWT). We propose a framework to 
measure saliency based on the orientation selective bands of the 
3D DWT and represent events using simple features of salient 
regions. We apply this method to human action recognition, test it 
on a large public video database consisting of six human actions 
and compare the results against an established method in the 
literature. Qualitative and quantitative evaluation indicates the 
potential of the proposed method to localize and represent human 
actions. 

Categories and Subject Descriptors 
I.4.8 [Scene Analysis] 

I.4.7 [Feature Measurement] – Feature representation 

General Terms 
Algorithms 

Keywords 
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1. INTRODUCTION 
As collections of video data grow automatic systems for 
efficiently querying this data about abstract or specific events 
have become a significant need. Dynamic event detection and 
representation is not straightforward even for videos with simple 
temporal structure.  Most approaches in the field are either model-
based [1][3][4], attempting to estimate a set of model parameters 
from the video data, or appearance- based [2][5][6][7], that 
perform inference directly on the observed data. In order to reach 
a semantic level of event description there is no need to process 
all available visual information. Specific parts of the scene are 
usually representative enough so that limiting further analysis to 
them reduces complexity and enhances understanding. This is the 
main idea of most approaches that extract interest/salient points or 
regions. Those areas are usually located around corners, edges or 

highly textured regions. Such Regions-Of-Interest (ROI) may 
either be defined directly, after fusing/combining different 
features extracted from the image or indirectly, after extracting 
interest points and grouping them together.  
The majority of salient point detectors is based on forming 
matrices that describe the gradient distribution in a local 
neighborhood of a point. The eigenvalues of these matrices 
represent the main neighborhood directions and are enough for 
measuring saliency so that if a significant change occurs, then this 
is one of the candidate points of interest. Lindeberg [21] proposed 
a Hessian-affine detector that shares a similar idea, since the 
second derivatives involved in the Hessian matrix give strong 
response on blobs and ridges. This method becomes scale 
invariant after selecting the characteristic scale of a local 
structure, for which a given function (e.g. a Laplacian) attains an 
extremum over scales [20]. Given the set of initial points 
extracted at their characteristic scales, an iterative estimation of 
elliptical affine region is applied in order to obtain the desired 
ROI. Affine region detectors have reached some maturity level in 
the computer vision literature. The detection of regions covariant 
with a class of affine transformations has been used in many 
applications including large scale image retrieval [8][9], object 
retrieval in video [10][11], texture recognition [4], object 
categorization [12][13] and symmetry detection [14]. Six methods 
for detecting such regions in images are described and evaluated 
in the recent work of Mikolajczyk et al. [15]. Overall, first the 
interest points are detected in scale-space with one of the methods 
and then an elliptical region for each of them is defined. Finally, 
proper selection and grouping provides the desired ROI. 
While a large amount of work has been done on representing 
spatial information, far less work has been done in exploiting the 
spatiotemporal video structure to detect video activities. Bobick et 
al. [2] construct Motion-History-Images (MHI) for representing 
human actions and use moment invariants to represent them. 
Although efficient, this method requires that the object 
performing the action is well segmented from the background. 
Most of the methods that fall into this category are extensions of 
the ones discussed before and exploit the temporal video structure 
using small spatiotemporal neighborhoods for detecting/selecting 
points of interest. The majority of these techniques is applied and 
tested to human action recognition. Laptev et al. [16] [17] and 
Schuldt et al. [18] build on the idea of Harris & Forstner interest 
point operators and propose a method to detect points that 



correspond roughly to points in space-time where motion abruptly 
changes direction. They adapt those points to velocity and scale 
and show how they correspond to interesting events by applying 
them to video interpretation and human action recognition [18]. 
Ke et al. extract volumetric features from spatiotemporal 
neighborhoods and construct a real-time event detector for 
complex actions of interest with quite promising results [7]. 
Boiman et al. [19] and Zelnik-Manor et al. [5] have used 
overlapping volumetric neighborhoods for analyzing dynamic 
actions, detecting salient events and detecting/recognizing human 
activity. In our earlier work in Rapantzikos et al. [23][24][25], we 
have proposed a volumetric framework for computing saliency 
based on intensity, color and orientation with applications to 
video ROI detection and video classification. This framework was 
based on the work of Itti et al. for visual attention on static images 
[26][27], which has proven its efficiency in several computer 
vision applications. Generally, all methods show the positive 
effect of using spatiotemporal information in video event analysis 
applications. 

 

 

 

 
 

Fig. 1 Volumetric representation of a jogging sequence (the 
central part is carved out) 

Although the notion of saliency remains the same, in this paper, 
we present a new framework, when compared to our previous 
work, for spatiotemporal salient regions detection and 
representation and test its efficiency on a human action 
recognition application. In this framework, a video sequence is 
represented as a solid in the three-dimensional Euclidean space, 
with time being the third dimension. We apply the multiscale 3D 
wavelet transform to decompose the volume into orientation 
sensitive subbands and use the resulting coefficients to compute 
saliency, detect regions of importance and extract representative 
features. The assumption of our method is similar to the one of 
most researchers in the field. We assume that the neighborhoods 
around points where significant motion, i.e. 3D orientation, 
change occurs are most important for interpreting dynamic 
actions. We also incorporate simple geometric constraints for 
boosting performance. The main focus of this paper is on 
exploring the ability of the 3D wavelet transform to locate and 
represent dynamic events with the constraint of keeping the 
computational complexity low, while performing efficiently. 
The proposed method is compared against the one proposed by 
Laptev et al. in [16][17] for a human action retrieval application. 
We use a public and well structured database of video clips 
showing people performing several different actions for 
presenting statistics and evaluating the techniques. 
The paper is organized as follows. Section 2 provides an 
introduction to the 3D wavelet transform in order to get a better 
insight of its orientation selectivity, while section 3 describes the 
methodology for computing saliency in the wavelet domain. In 
section 4 we provide extended statistics on the human action 
database by comparing the proposed method with a state-of-the 
art one and in section 5 we draw conclusions and discuss future 
work. 

2. WAVELET-BASED SPATIOTEMPORAL 
VIDEO REPRESENTATION 
 

2.1 Spatiotemporal Video Representation 
Given an arbitrary input sequence, we form a volume in a discrete 
3D space, which is a set of grid points in 3D Euclidean space 
defined by their Cartesian coordinates (x, y, t). Specifically, the 

spatial dimensions of width and height are the x- and y- axes of a 
frame, while the temporal one is derived by layering the frames 
sequentially in time (x-y-t space). The minor element of this 
volumetric representation is called voxel and is defined as the unit 
cubic volume centered at the integral grid point. Such a 
volumetric representation provides richer information about the 
video structure along a large temporal scale than the individual 
2D frames. 
A moving object in such a volume is perceived as occupying a 3D 
region in space-time volume. Fig. 1 shows the volumetric 
representation of a jogging sequence with a central part of the 
volume being carved out. 

2.2 3D Discrete Wavelet Transform 
The 3D DWT is a separable transform that can be constructed by 
three separate 1D wavelet transforms. The signal at each of the 
three dimensions is convolved with a low-pass L and a high-pass 
H filter and downsampled by two. If we define  to be 
the volume corresponding to an input sequence, then F is initially 
filtered along the x-dimension, resulting in a low-pass volume 

 and a high-pass one . These volumes are 
subsampled by two and filtered along the y-dimension, resulting 
in four subvolumes, namely LL, LH, HL, HH. Then the 
subvolumes are downsampled once again and filtered along the t-
dimension, resulting in eight subvolumes, namely LLL, LLH, 
LHL, LHH, HLL, HLH, HHL and HHH.  Hence, the result of the 
decomposition is a multiscale structure of an approximation 
subband and a series of detail subbands , where l denotes the 
number of scales and i∈{LLH, LHL, LHH, HLL, HLH, HHL, 
HHH}. Fig. 2 illustrates the 3D decomposition of a volume. 
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The subbands at each level of the decomposition have certain 
properties related to spatiotemporal orientations in the input 
volume due to the frequency ranges they contain. For example, 
the LLL subvolume corresponds to the slowly moving average 
signal (approximation band), LLH emphasizes the quickly 
changing average signal, LHL the slowly changing horizontal, 
HLL the slowly changing vertical, HHH the quickly changing 
diagonal features etc. Fig. 3 depicts a slice of the wavelet 
decomposition of a running sequence for each of the bands. Light 
values correspond to strong coefficients.  



 
Fig. 2 intermediate steps for computing the 3D Discrete Wavelet 
Transform  
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(b) 
Fig. 3 (a) three frames of a “running”  sequence; (b) the 7 detail 
bands of 3D-DWT for the middle frame of (a). The images are 
better viewed in color, where red corresponds to high values and 
while blue to low ones. 
 

3. SALIENT REGION DETECTION AND 
REPRESENTATION 
3.1 Saliency estimation 
As discussed before, the wavelet transform of a clip gives 
information about spatiotemporal frequencies of the signal, while 
localizing them in space, time and scale. These frequencies 
correspond to different spatiotemporal orientations and therefore 
obtaining such a high joint resolution in space/time and 
spatiotemporal frequency is critical for detecting and analyzing 
dynamic events. We expect that spatiotemporal regions of interest 
will pop out in the transformed domain due to the high energy 
concentration in one or more bands. Exhibiting high energy 
concentration in more than one band means that this region 

becomes more salient, since it corresponds to a region where a 
significant motion change occurs. 
Following this rationale, we assume that dynamic video content 
can be characterized by measuring the distribution of 
spatiotemporal energy across the 3D wavelet subbands and we 
define a voxel or a spatiotemporal neighborhood as salient, if it 
exhibits high inter- and intra- band energy concentration across 
scales. We realize this assumption by computing the energy of 
each voxel in a small neighborhood at each band and fusing it 
with the same neighborhoods across bands. In the wavelet 
domain, this kind of fusion becomes quite simple, since strong 
signal coefficients are already clearly separated from the rest and 
noise is spread all over the bands. Experimentation with various 
simple fusion techniques prove that addition of the computed 
energies across bands is enough to make salient regions pop out 
and measure the amount of saliency for each coefficient, while 
keeping computational complexity low. This measure may be also 
considered as a measure of spatiotemporal texture over time. We 
compute local energy for each subband by 

∑
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where N is a local neighborhood defined around each wavelet 
coefficient, l the number of scales and i the subband index as 
defined in section 2.2. The resulting energies for six human 
actions and for  neighborhood N around each coefficient 
are shown in Fig. 4, 5. Notice the well defined regions around the 
areas of interest that are important for interpreting each of the 
actions (e.g. hands, knees, legs, etc.). 
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Finally the saliency measure is computed by 
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Notice that in this work we only used the 1st scale of the wavelet 
transform, which is the finer one. More refined results in case of 
complex videos may be obtained by exploiting the other scales 
too, but it was not necessary for the data we processed. A further 
insight in the nature of the fused bands and the computed saliency 
is given in the next section. 

3.2 Representation of salient regions 
As mentioned in the introduction, the motivation of this work was 
to propose a computationally efficient but successful technique to 
represent spatiotemporal actions. Nevertheless, we started to think 
towards this direction after visually exploring the strength of the 
3D DWT to represent complex actions in its subbands. After 
decomposing a small number of different human actions videos, it 
became evident that local activation of groups of specific 
subbands seemed to correspond to specific actions. 



In Fig. 4, 5 one frame for each of six human action sequences are 
depicted along with the corresponding slice of the local energy 
computed for each of the wavelet subbands. These sequences are 
from a public available dataset [22] and correspond to boxing, 
hand-clapping, hand-waving, jogging, running and walking. More 
details about the data will be given in the experimental section. 
Just a glance at the figures reveals the differences in subband 
activity after decomposing each action sequence and computing 
the energies (Eq. 1). For example the LLH band in the boxing, 
hand-clapping and hand-waving sequences is different both in 
terms of magnitude and geometrical configuration of high activity 
areas. The same holds for the LHH band. Similar observations can 
be made from the slices in Fig. 5 that contain the actions with 
higher motion activity.  
Since one of our goals was to explore the potential of the wavelet 
coefficients in representing complex actions, we experimented 
with different combinations of the bands for the saliency 
computation in Eq. 2. Fig. 6 shows results on a handwaving 
sequence after combining two sets of bands, namely the  

 and .  Set 
b1 is more related to fast changing regions, which are usually 
related to the foreground, while b2 is related to slowly changing 
regions related to the background. This difference is quite obvious 
for actions of low motion activity like boxing, hand-clapping and 
hand-waving as can be seen in Fig. 6. Fig. 6b depicts the result 
after fusing only the subbands in b1 and Fig. 6c after fusing the  
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Fig. 5 the 7 wavelet subbands corresponding to a frame of a (a) 
jogging, (b) running and (c) walking sequence. (bands’ labels are 
shown in (a)) 
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(c) 

Fig. 4 the 7 wavelet subbands corresponding to a frame of a (a) 
boxing, (b) hand-clapping and (c) hand-waving sequence. (bands’ 
labels are shown in (a)) 

subbands in b2. These actions do not include significant torso or 
body motion. Nevertheless, the difference is lower when looking 
at the results for the rest of the actions. It seems reasonable to 
weight the contribution of these two sets according to the activity 
in the scene in order to obtain more representative regions, but in 
this paper we select to use all of the bands interchangeably, since 
we are rather focusing on the potential of the spatiotemporal 
wavelet domain to detect ROIs rather than optimal performance.  

    
(a) 
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(c) 

Fig. 6 (a) neighboring frames from a hand-waving sequence 
under camera zoom in/out; (b) saliency using bands in b1; (c) 
saliency using bands in b2; (see text) 
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(b) 

Fig. 7 (a) neighboring frames from a boxing sequence under 
camera zoom in/out and the corresponding saliency using all 
bands; (b) the same for a walking sequence. 
The geometry of an action, as supported by researchers in the 
field, plays an important role in recognition. As mentioned in the 
introduction the shape descriptions of the extracted MHI 
silhouettes of Bobick et al. were successful, but required exact 
segmentation [2]. Boiman et al. on the other hand have used loose 
geometrical constraints to enhance the known event detection 
ability of their method [19]. In an attempt to incorporate such 
constraints in our framework, while keeping computational 
resources low, we run a k-means algorithm to detect a number of 
clusters on the saliency volumes and select the p most populated 
ones. In this way we obtain p centroids that correspond to the 
most salient areas of the mask. Visual examination of the results 
proves that this clustering leads to p points on the most important 
parts of the input, which correspond to e.g. the two hands in a 

hand-waving sequence, to the legs area for a walking one or the 
neck and legs area of a running sequence. 
In order to reduce computational complexity of the clustering 
algorithm by limiting the number of observations, we threshold 
the saliency volumes using an automatic method [28] and obtain 
binary masks. It is worth mentioning that this step is not crucial 
for the method, since the salient areas are already clearly defined 
and there is no possibility to threshold out areas of interest. 
Examples for these masks are given in Fig. 8. Notice that the 
obtained masks can be interpreted as motion history masks, 
similar in a way to the MHI discussed before, since they contain 
the accumulated motion of the neighboring frames in the 
neighborhood N used to compute local energies in Eq. 1. 
Connected K-means is then applied having as variables the 
saliency value of each voxel in the mask and the corresponding x, 
y, z coordinates. The centroids are normalized with respect to the 
centroid of the mask and the histograms are normalized with 
respect to standard deviation and mean value. 
The final feature vector F is obtained by combining all computed 
features  from the binary mask as  
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where denotes the n-bin histogram of each energy band,  
the selected p points after the k-means clustering for l levels of 
the wavelet transform. Histograms are computed only for the 
voxels in the binary masks and the first bin that corresponds to the 
least salient voxels is discarded. 
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4. EXPERIMENTS 
4.1 Experimental setup and methodology 
For evaluating the proposed framework, we select human action 
recognition, set up an action retrieval application and compare the 
results against the method proposed by Laptev et al., which is 
available on-line [16]. We used a public database to evaluate both 
methods [22]. This database consists of six types of human 
actions (walking, jogging, running, boxing, hand-waving, hand-
clapping) performed by 25 subjects in four different scenarios: 
outdoors s1, outdoors with scale variation s2, outdoors with 
different clothes s3 and indoors s4. All sequences were recorded 
with a static camera at a 25fps rate and have a size of 160x120. 
Annotation at the frame level is also available indicating when an 
action starts and when it stops. In this way, each video is split into 
four sub-sequences of almost equal length. For our experiments, 
we use the first 32 frames of each sub-sequence as a 
representative clip of the action. 

    

    

    

    

    

    
Fig. 8 Binary masks used to enhance the computational efficiency 
of the clustering step (see text). 

Laptev et al. [16] and Schuldt et al. [18] detect local space-time 
interest points, adapt them to position, size and velocity of the 
moving patterns and extract spatiotemporal jets of order four 
around each point. Their implementation returns all points-of-
interest without any selection, but in [16] they propose to run a k-
means clustering and select four candidate interest points from the 
four most populated clusters. We implemented this step in order 
to be fair and avoid lengthy feature vectors. Hence, the length of 
the feature vector for this method is 136, since 4 points are 
selected and 34 local spatiotemporal Harris jets are computed for 
each of them.The feature vector of our method is lengthier, since 
we use n=7, p=3 and l=2 in (3). This gives rise to a feature vector 
of length 224. 



For performance evaluation we applied the leave-one-out 
approach to a similarity retrieval application, taking each action 
clip one after the other, removing its contribution from the 
database, finding its action label and comparing the result to its 
actual label. For similarity we used the Euclidean distance, which 
for the representation of two sequences  and  is defined by 1k 2k

Table 3 Laptev et al. method adapted, Confusion matrix, 
scenario s1 

 Box Hclp Hwav Jog Run Walk 
Box 45 15 7 9 15 8 
Hclp 15 44 11 3 13 14 
Hwav 5 8 57 4 14 12 
Jog 1 1 9 32 33 24 
Run 1 6 1 11 75 6 
Walk 1 7 8 21 19 44 
prec 0.662 0.543 0.613 0.400 0.444 0.407 

rec 0.455 0.440 0.570 0.320 0.750 0.440 
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where L denotes the length of the feature vector. 

4.2 Results 
In this section we present statistics on retrieving actions from the 
available database. Tables 1, 2 show results on the s1 scenario for 
the proposed method with and without geometric constraints, with 
the last method being more successful in identifying the actions. 
Notice the improvement in differentiating hand-waving from 
boxing and hand-clapping/walking from boxing sequences. The 
first is mainly due to the different geometry of the raising arms, 
while the second mainly due to the closeness of the salient 
centroids (upper legs part) to the mask centroid. Table 3 shows 
the retrieval results when using the Laptev et al.’s method, which 
are lower than the corresponding results in tables 1 and 2. Notice 
the high improvement achieved by our technique in detecting 
jogging sequences and differentiating them from the running ones 
when compared to the other method. These two actions are the 
most confusing ones, as Schuldt et al. mention in their action 
classification application [18].  
Table 1 Proposed method on scenario s1 

 Box Hclp Hwav Jog Run Walk 
Box 64 10 17 0 0 8 
Hclp 18 59 20 0 0 3 
Hwav 15 12 72 0 0 1 
Jog 0 0 1 74 10 15 
Run 0 0 0 22 75 3 
Walk 12 6 3 14 3 62 
prec 0.587 0.678 0.637 0.673 0.852 0.674 

rec 0.646 0.590 0.720 0.740 0.750 0.620 

 

Table 2 Proposed method with geometric constraints on 
scenario s1 

 Box Hclp Hwav Jog Run Walk 
Box 73 14 11 0 0 1 
Hclp 15 70 12 0 0 3 
Hwav 5 6 85 0 0 4 
Jog 0 1 0 74 15 10 
Run 0 0 0 22 75 3 
Walk 5 5 3 14 1 72 
prec 0.745 0.729 0.766 0.673 0.824 0.774 

rec 0.737 0.700 0.850 0.740 0.750 0.720 

For the sake of completeness, we also include results of our 
method for all sequences involved in scenarios s1, s2 and s3. As 
derived from the statistics in Table 4, it performs well, without 
any specific adaptations for facing e.g. the scale change in s2, 
which is the most difficult scenario as Shuldt et al. mention in 
[18]. 

Computational efficiency was also one of our goals. Indicatively, 
for a Pentium IV, 2.4GHz and 512 MB RAM, the average 
processing time of the proposed method is 19s, while for Laptev 
et al.’s method is 319s. The maximum number of iterations to 
achieve adaptation convergence for the Laptev et al.’s method is 
set to 20 as in the public code. Both implementations are in 
MATLAB. Processing time for our method depends on the size of 
the obtained binary mask, while for the Laptev et al.’s method the 
convergence or non-convergence of scale-velocity adaptation is 
quite critical. Both methods are more computationally demanding 
when dealing with the more dynamic actions of the database, 
namely jogging, running and walking. In order to be fair, we 
should mention that the performance of Laptev et al.’s method 
depends on the number of points that adapt successfully to scale 
and velocity. The adaptation, in turn, depends on the defined 
number of max iterations. Nevertheless, setting a high value for 
this number increases dramatically the computational time. 

Table 4 Proposed method, Confusion matrix, with geometric 
constraint, scenarios s1, s2, s3 

 Box Hclp Hwav Jog Run Walk 
Box 194 47 32 7 3 16 
Hclp 70 154 36 11 8 17 
Hwav 37 39 197 7 1 17 
Jog 7 9 3 168 70 43 
Run 5 7 7 80 180 21 
Walk 22 23 27 46 21 161 

prec 0.579 0.552 0.652 0.527 0.636 0.585 
rec 0.649 0.520 0.661 0.560 0.600 0.537 

5. CONCLUSIONS AND FUTURE 
RESEARCH 
In this paper we propose a framework for spatiotemporal saliency 
computation in the 3D wavelet domain, in order to represent 
human motion. We use a set of wavelet-based and geometric 



features that correspond to intra- and inter- activity peaks in the 
orientation sensitive wavelet subbands and give a deep insight of 
the abilities of the 3D DWT to locate dynamic events in the input 
sequence. The efficiency of the method in recognizing human 
actions is illustrated by comparison against a well established 
technique on a public video dataset consisting of six actions. 
The current work should be regarded as an attempt to illustrate the 
strengths in terms of simplicity and computational efficiency of 
the wavelet transforms to represent dynamic video events. In the 
future, we wish to elaborate on saliency computation by 
automatic weighted fusion of bands in order to deal with more 
complex sequences. We will also consider using the more 
orientation selective 3D Dual-Tree Wavelet Transform [29] for 
the same goal. Additionally we wish to increase the 
discriminative power of the proposed method by investigating the 
optimality in selecting a number of spatiotemporal points from the 
saliency volume and extracting features more robust to scale. 
Specifically, for human action recognition, we will focus on 
improving the statistics shown in Table 4. In general we will 
examine ways to use the method for general video event detection 
and representation in a computationally efficient way. 
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